Adaptation and validation of the RED-tecnoestrés scale in argentine university student population
Keywords:
Techno-stress; university students; conceptual and metric adaptationAbstract
The purpose of this study was to carry out an adaptation and validation of the RED-Technostress scale in a population of Argentinian students. A sample of 1956 university students with an average age of 24.69 (SD = 6.52, Min = 18, Max = 66) was used. 78.2% (n = 1295) were women, 21% (n = 433) were men, and 0.8% preferred not to indicate. In relation to the criteria established under expert judgment, adequate percentage values were obtained in the items, as well as Aiken V coefficients in all cases. The exploratory factor analysis explained 61.43% of the variance in the scores and determined the grouping of 22 items in 5 latent variables. The factorial solution yielded values deemed adequate, equal to .91 for the Kaiser Meyer Olkin index (KMO) and for the Bartlett Sphericity Test (χ² = 555.84; SD = 0.21; p <.000). The confirmatory factor analysis indicated a good fit of the five-factor model in the sample of Argentinian university students: χ2 = 4799.571., P <.000; CFI = .964; IFI = .954; RMSEA = .050 90% CI [.046, .054], p <.001. In addition, the regression coefficients for each element showed acceptable internal consistency indices for all sub-dimensions (fatigue, α ordinal = .93 and ω ordinal = .95; anxiety, α ordinal = .87 and ω ordinal = .90; α ordinal addiction = .76 and ω ordinal =. 84; and inefficiency α ordinal = .90 and ω ordinal = .91).
As a conclusion, the inventory is a valid and reliable instrument to evaluate techno-stress in the population of Argentinian university students.
References
Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and psychological measurement, 45(1), 131-142. https://doi.org/10.1177/0013164485451012
Bollen, K., y Long, J. (1993). Testing structural equation models. Sage.
Brod, C. (1984). Technostress: The human cost of the computer revolution. Reading, Mass. Addison-Wesley.
Brown, T. A. (2006). Confirmatory factor analysis for applied research. Guilford publications.
Browne, M. W., y Cudeck, R. (1993). Alternative ways of assessing model fit En: Bollen KA, Long JS, eds. Testing Structural Equation Models (pp. 136-162). Sage
Bruno, F. J. (1986). Dictionary of key words in psychology. Boston, MA: Routledge and Kegan.
Bryant, F. B., y Satorra, A. (2012). Principles and practice of scaled difference Chi-Square testing. Structural Equation Modeling: A Multidisciplinary Journal. 19, 372–398. https://doi.org/10.1080/10705511.2012.687671
Carlotto, M. S., y Câmara, S. G. (2012). Traducción, adaptación y explotación de las propiedades psicométricas de la escala de tecnoestrés-RED/TIC. Psicologia em Estudo, 15(1), 171-178. https://doi.org/10.1590/S1413-73722010000100018
Coulacoglou, C. y Saklofske, D. H. (2017). Psychometrics and psychological assessment principles and applications. Elsevier, Academic Press.
Epskamp, S., Stuber, S., Nak, J., Veenman, M., y Jorgensen, T. D. (2019). semPlot: Path Diagrams and Visual Analysis of Various SEM Packages’ Output (Version 1.1. 2). Computer software.
Escobar-Pérez, J., y Cuervo-Martínez, A. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en medición, 6(1), 27-36. https://cutt.ly/FgwkzLH
Evans, J. D. (1996). Straightforward statistics for the behavioral sciences. Brooks/Cole Publishing.
Fletcher, T. D., y Fletcher, M. T. D. (2013). Package ‘psychometric’. Recuperado de http://cran.rproject. org/web/packages/psychometric/psychometric.pdfel,4
Freiberg Hoffmann, A., Stover, J. B., de la Iglesia, G. y Fernández Liporace, M. (2013). Correlaciones policóricas y tetracóricas en estudios exploratorios y confirmatorios. Ciencias Psicológicas, 7(2), 151-164. https://cutt.ly/agwkKzd
Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., y Tatham, R. L. (2006). Multivariate data analysis. Pearson Prentice Hall.
Hu, L. T., Bentler, P. M., y Kano, Y. (1992). Can test statistics in covariance structure analysis be trusted?. Psychological bulletin, 112(2), 351. https://psycnet.apa.org/doi/10.1037/0033-2909.112.2.351
Hyrkäs, K., Appelqvist-Schmidlechner, K., y Oksa, L. (2003). Validating an instrument for clinical supervision using an expert panel. International Journal of nursing studies, 40(6), 619-625. https://doi.org/10.1016/S0020-7489(03)00036-1
Jiménez, A. L. (2010). Tecnología como fuente de estrés: una revisión teórica al concepto de tecnoestrés. Temas de Comunicación, (21), 157-180. https://cutt.ly/Bgwlqxs
Jorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., Rosseel, Y., Miller, P., Quick, C., y Garnier-Villarreal, M. (2018). semTools: Useful tools for structural equation modeling. R package version 0.5-1.
Kline, R. B. (2011). Principles and practice of structural equation modeling. Guilford Press.
Llorens, S., Salanova, M., y Ventura, M. (2011). Guía de intervención: Tecnoestrés. Síntesis.
Martorell, M. C., González, R., Odoñez, A., y Gómez, O. (2011). Estudio confirmatorio del cuestionario de conducta antisocial (CCA) y su relación con variables de personalidad y conducta antisocial. Revista Iberoamericana de Diagnóstico y Evaluación – e Avaliação Psicológica, 31(2), 35-52. https://cutt.ly/Ngwlj2A
McDonald, R.P. (1999). Test theory: A unified treatment. Erlbaum.
Muthén, B., y Kaplan, D. (1985). A comparison of some methodologies for the factor analysis of non‐normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38(2), 171-189.
Nunnally, J. C., y Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw Hill.
Pérez-Gil, J. A., Moscoso, S. C., y Rodríguez, R. M. (2000). Validez de constructo: el uso de análisis factorial exploratorio-confirmatorio para obtener evidencias de validez. Psicothema, 12(Suplemento), 442-446. https://cutt.ly/PgwlmPb
Revelle, W. (2018a). Psych: Procedures for personality and psychological research (Version 1.9. 12.31). Computer software. Northwestern University.
Revelle, W. (2018b). Psycho: Procedures for personality and psychological research (Version 1.9. 12.31). Computer software. Northwestern University.
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more Version 0.5–12 (BETA). Journal of statistical software, 48(2), 1-36. https://cutt.ly/xgwlRZJ
Salanova, M., Llorens, S., Cifre, E., y Nogareda, C. (2007). Tecnoestrés: concepto, medida e intervención psicosocial. Nota técnica de prevención, 730, (21 serie). Madrid: Instituto Nacional de Seguridad e Higiene en el Trabajo.
Schaufeli, W., y Bakker, A. (2003). Utrecht work engagement scale. Utrecht University.
Schumacker, R., y Lomax, R. (2016). A beginner´s guide to structural equation modeling. Routledge.
Tinsley, H. E., y Weiss, D. J. (1975). Interrater reliability and agreement of subjective judgments. Journal of Counseling Psychology, 22(4), 358. https://doi.org/10.1037/h0076640
Tornimbeni, S., Pérez, E., Olaz, F., de Kohan, N. C., Fernández, A., y Cupani, M. (2008). Introducción a la psicometría. Paidós.
Wang, K., Shu, Q., y Tu, Q. (2008). Technostress under different organizational environments: An empirical investigation. Computers in Human Behavior, 24(6), 3002-3013. https://doi.org/10.1016/j.chb.2008.05.007
Weil, M.M. y Rosen, L.D. (1997). Technostress: Coping with technology @work, @home, @play. John Wiley and Sons.
Wickham, H. (2009). Elegant graphics for data analysis (ggplot2). Springer.
Downloads
Published
Issue
Section
License
Copyright (c) 2021 ACADEMO Revista de Investigación en Ciencias Sociales y Humanidades

This work is licensed under a Creative Commons Attribution 4.0 International License.





